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Abstract  

This paper aims to present a robust fault diagnosis structure-based observers for actuator faults in the pitch 

part system of the wind turbine benchmark. In this work, two linear estimators have been proposed and 

investigated: the Kalman filter and the Luenberger estimator for observing the output states of the pitch system 

in order to generate the appropriate residual between the measured positions of blades and the estimated values. 

An inference step as a decision block is employed to decide the existence of faults in the process, and to classify 

the detected faults using a predetermined threshold defined by upper and lower limits. All actuator faults in the 

pitch system of the horizontal wind turbine benchmark are studied and investigated. The obtained simulation 

results show the ability of the proposed diagnosis system to determine effectively the occurred faults in the 

pitch system. Estimation of the output variables is effectively realized in both situations: without and with the 

occurrence of faults in the studied process. A comparison between the two used observers is demonstrated.   
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List of Symbols/Acronyms 

 

FDI –  Fault Detection and Isolation; 

FTC –  Fault-Tolerant Control; 

KF –  Kalman Filter; 

LO –  Luenberger Observer; 

RE –  Relative Error; 

RMSE –  Root Mean Square Error;  

WT – Wind Turbine; 

𝛽𝑟𝑒𝑓 –  Reference angle of the blade; 

 
βm  –  Measured angle of the blade; 

𝜁 –  Damping factor; 

𝜔𝑛 –  Natural frequency;  

�̇�𝑖
 
–  Angular speed; 

 𝛽𝑟
𝑖  –  Input vector; 

𝑦𝑝 
𝑖 –   Measurable vector of output; 

𝜏𝑔.𝑟  – Torque generator reference; 

𝛼𝑔𝑐 – Parameter model. 

 

1. INTRODUCTION 

 

In the last two decades, wind turbine (WT) 

presents an important renewable energy source for 

various electricity domains. Indeed, many 

applications and wind farms have been installed in 

the world to guarantee the continuous production of 
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electricity. The main principle of these machines is 

to generate electrical energy by transforming the 

kinetic energy of wind in the installed workspace, 

especially in areas where an important value of wind 

is founded. 

Wind turbines operate for long periods of time, 

which increases their degradation rates and even the 

failure of various components such as: electronic 

control units, rotor blades, hydraulic parts, 

generators, sensors, and actuators) [1]. To guarantee 

continuous electrical production of energy, these 

faults must be avoided to reduce maintenance 

interventions and costs. Wind turbine systems have 

extremely employments and they are exposed 

externally for different environmental facts [1, 2]. 

The employed sensors and actuators in the wind 

turbines are affected by faults during operation such 

as faults in: gearbox, pitch system sensors and 

actuators, drive train parts, generator problems, 

sensors and actuators in the blades, converter 

problems [2, 3]. For this purpose, the condition-

monitoring system must be designed and 

implemented as well as a performed structure for the 

used wind turbines.  
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In order to ensure the correct application and 

availability of wind turbine machines, different 

modern and intelligent techniques are employed and 

investigated to deal with this supervision system 

such as computational intelligence, real-time 

condition monitoring strategies, advanced diagnosis 

and control systems [1, 3, 4]. So, an instantaneous 

supervision and effective fault diagnosis system is 

needed to control the wind turbine in order to 

generate the appropriate energy by optimizing the 

power production with minimum mechanical 

vibrations and less occurred faults. Where, the main 

task is to detect and isolate the occurred faults in a 

short possible time [3, 5].  

Different researches and studies have been 

proposed to deal with the diagnosis task of wind 

turbines using several approaches [3, 5-20]. These 

proposed methodologies adopt distinctive design of 

schemes, resulting in different properties according 

to the used techniques. They are based mainly on two 

mechanisms: model-based and data-based 

approaches [1, 3, 5]. However, the stability of the 

studied system is an important consideration for 

making them more conservative to achieve optimal 

performances [3].  

Authors in paper [6], have proposed a Takagi-

Sugeno fuzzy logic models to manage complicated 

and unknown situations of the wind turbine and to 

residual generators. Where the parameters of fuzzy 

models are estimated via a system identification 

strategy. Whereas, paper [7] based on the analysis of 

collected SCADA data sets, an artificial neural 

network is applied to identify faults in all 

components of the WT. A model-based approach for 

fault detection and isolation structure is employed to 

the wind turbine benchmark using T-S fuzzy logic 

system in paper [8]. Where, a robust fuzzy sliding 

mode observer is derived to generate the appropriate 

residuals corresponding the occurred faults. Authors 

[9] have investigated fault estimators using data-

driven methodologies based on fuzzy models and 

neural networks. Two fault diagnosis solutions for 

condition monitoring of a wind turbine process are 

proposed and developed in this paper. In papers of 

Odgaard et al. [10 and 11], a total benchmark system 

of a specific kind of turbines is proposed and 

simulated. The mainly possible occurred faults are 

simulated with different scenarios in sensors, 

actuators, and system faults for all components of the 

horizontal three blades wind turbine: pitch system, 

the drive train, the generator, and the converting 

system. Paper [12], an effective fault diagnosis 

method is proposed for the previous WT model in 

[11]. Where, the elaborated structure is based on 

physical redundancy in sensors to carry out the 

correct residuals between all the process 

measurements. Then a crisp logic technique is used 

to classify actuator and sensor faults. Authors in 

[13], have presented a fault detection and isolation 

strategy for WT benchmark using a sliding mode 

observer for different faults. In the paper [14], an 

SVM method is combined with model-based 

observer for detecting sensors and actuators faults in 

a wind turbine benchmark. In addition, authors in 

papers [15 and 16] have used a combined approach 

between Bayesian and set membership techniques 

for the design of fault diagnostic structure based on 

the FDI model. Authors in [17] have proposed a 

model-based FDI scheme as hybrid model based on 

adaptive thresholds varying on time in order to 

guarantee false-alarms for fault detection, 

approximation, and isolation estimator. Hence, paper 

[18] considered a Monte-Carlo method for the fault 

evaluation of sensors in a WT as a sensitivity 

analysis task. Deep learning algorithms are widely 

investigated due to their powerful performances for 

the fault diagnostic and prognosis of WT machine 

such as in papers [19, 20, 21, 22]. 

Fault diagnosis based observers are a very 

interesting methodology for dynamic systems [3, 23, 

24, 25, 33]. It is a model-based fault detection 

approach, where the principal idea is to estimate and 

observe unmeasured variables and uncertainty 

parameters of the studied process [24]. Paper [26] 

presents an investigation of using artificial neural 

networks and Kalman filters for the detection of 

blade pitch system faults. Whereas, authors in [27] 

have proposed a Kalman filter to estimate the 

process parameters with an adaptive fuzzy inference 

system. Papers [25, 28] present adaptive fault-

tolerant control (FTC) methodologies based 

observers for sensors and actuators under time-

varying speeds for the wind turbine benchmark. 

Luenberger Observer also is an interesting estimator 

for linear systems [25], can be used for fault 

detection and diagnosis [24]. Such as in [29], where 

authors have designed an observer for 

electromechanical actuator. Whereas, paper [30] 

presents Luenberger Observer with a learning 

mechanism for an actuator fault detection based on 

fuzzy logic system. This proposed intelligent system 

is constructed under time-varying delays.  Papers 

[31] investigate the design of Luenberger estimator 

for different multi-input and multi-output (MIMO) 

systems. Hence, authors in [32] present a 

comparison between some observers such as: 

Kalman filter, Luenberger estimator, sliding mode, 

and unknown input observer. A review on the recent 

fault tolerant control and diagnosis for WT is given 

in paper [3], including a set of state observers.  

Hence, other recent papers are focused on the 

investigation of fault detection and condition 

monitoring for the pitch system of a wind turbine 

machine using different processing schemes such as: 

SCADA data in [36], Extreme Random Forest 

optimized by Grey Wolf algorithm called (IGWO-

ERF) in used paper [37], and a model based on Light 

Gradient Boosting Machine (LGBM) is proposed in 

paper [38]. 

The objective of this paper is to design and 

propose efficient fault diagnosis structure based 

observers using Linear Kalman filters and 

Luenberger estimators. The studied fault detection 

system is applied to failure detection in the pitch 
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system of an horizontal wind turbine benchmark. 

Actuator faults are studied and investigated in this 

paper.   

For that, this paper is organized as: in section 2, 

the main parts of the wind turbine machine are 

described. A background of the employed observers 

is given in section 3. Section 4 will introduce and 

explain the proposed fault diagnosis structure using 

Kalman filter and Luenberger observers as output 

estimators. The obtained results for fault diagnosis 

are presented and discussed in section 5. Different 

tests are shown with a comparison study between the 

two elaborated observers. Whereas, section 6 will 

conclude this paper. 

 

2. WIND TURBINE STRUCTURE   

 

The WT that has been studied in this work is a 

horizontal turbine with three blades. This wind 

turbine machine is composed of a pitch system 

(aerodynamic part), a drive train as a mechanical 

part, and the electrical part as the generator with a 

converter (Fig. 1). Where the principal task is to 

convert the wind power as kinetic energy into 

electric energy. In this figure, we present an 

overview of the wind turbine benchmark model. The 

presented variables are given below as acronyms. To 

study and investigate a fault diagnosis approach, the 

used model must include the wind turbine sensors 

and actuators with their probable detected faults [10, 

11]. The possible faults in the wind turbine must be 

efficiently detected and managed to avoid 

deterioration of the nominal operating conditions 

and become a critical issue hard to manage.  

 

Fig. 1. Components of the wind turbine model 

We can summarize each component as follows: 

- The pitch system: is hydraulic piston servo where 

its function is to rotate the blade with an angle value 

denoted (βm). This part of the WT machine is 

modelled with a second order closed-loop function 

[10] as presented in equation. 1. Where βref is the 

reference angle. It is a set point generated by the 

controller of the WT. However, βm is the measured 

output used to adjust the pitch actuator system [11].  

All blades of the wind turbine are identically 

modelled with the transfer function shown in eq. 1: 

                        
22

2

2 nn

n

ref

m

ss 







++
=            (1)                                                            

𝛽𝑟𝑒𝑓  : Reference angle of blade, 

 
βm  :  Measured angle value of the blade, 

𝜁  : Damping factor equal to 0.6, 𝜔𝑛: Natural 

frequency = 11.11 rad/s. 

 

The state space of the pitch system can be written as 

follows:  

 

�̇�𝑝
𝑖 = [−2𝜁𝜔𝑛 −𝜔𝑛

2

1 0
] 𝑥𝑝

𝑖 + [
1
0

] 𝛽𝑟
𝑖  

𝑦𝑝
𝑖 = [0 𝜔𝑛

2]𝑥𝑝
𝑖              (2)  

Where: 𝑥𝑝
𝑖 [

𝛽𝑖
̇

�̇�
] is the unmeasurable state of i-th 

pitch angle, �̇�𝑖 
: is the angular speed, 𝛽𝑟

𝑖  : is the 

input vector, 𝑦𝑝
𝑖 : is the measurable vector of output.  

We denote the matrices of the studied system as: 

 

 𝐴𝑝 = [−2𝜁𝜔𝑛 −𝜔𝑛
2

1 0
] , 𝐵𝑝 = [

1
0

] , 𝐶𝑝 = [0 𝜔𝑛
2]   (3)  

The model of the blade and the pitch system is 

written as: 

                            �̇�𝑝
𝑖

= 𝐴𝑝𝑥𝑝
𝑖 + 𝐵𝑝𝛽

𝑟
𝑖 , 

     𝑦𝑝
𝑖 = 𝐶𝑝𝑥𝑝

𝑖

                      

(4) 

(𝐴𝑝,𝐵𝑝) are controllable, whereas, the matrixes 

(𝐴𝑝,𝐶𝑝) are observable. 

  

- Drive train: is a mechanical part considered as a 

locomotive device. Its main role is to control the 

rotation speed of the rotor connected from the blades 

to the generator. The state space is given as: 

[

�̇�𝑟(𝑡)

�̇�𝑔(𝑡)

�̇�𝛥(𝑡)

] = 𝐴𝑑𝑡 [

𝜔𝑟(𝑡)

𝜔𝑔(𝑡)

𝜃𝛥(𝑡)

] + 𝐵𝑑𝑡 [
𝜏𝑟(𝑡)

𝜏𝑔(𝑡)
]      (5)                                                                      

The output of the state space is: 

                             

















=

 )(

)(

)(

t

tg

tr

dtY







                    (6)                       

- Generator and Converter  :  to generate electrical 

energy after converting it from mechanical energy 

[10]. It is modelled by a transfer function of first 

order such as: 
𝜏𝑔(𝑠)

𝜏𝑔.𝑟(𝑠)
=

𝛼𝑔𝑐

𝑠+𝛼𝑔𝑐
                  (7)                                                                                  

𝜏𝑔.𝑟: torque generator reference, 𝛼𝑔𝑐: is the 

parameter model of generator and converter. The 

function that represents the reproduced power by the 

generator is presented below in equation. 8, where      



DIAGNOSTYKA, Vol. 24, No. 1 (2023)  

Zemali Z, Cherroun L, Hadroug N, Nadour M, Hafaifa Z.: Fault diagnosis-based observers using Kalman … 

 

4 

𝜂𝑔= 0.98 represents the generator function 

efficiency.   

𝑝𝑔(𝑡) = 𝜂𝑔𝜔𝑔(𝑡)𝜏𝑔(𝑡)         (8)                                                              
 

- Controller: The employed controller type is a 

proportional integrator (PI), and it works in two 

intervals for different wind speeds. Figure. 2 

presents the operation modes of the wind turbine in 

different times. The controller works to protect the 

W T from damage during high wind speeds and to 

maintain the power generation to a reference value 

(4.8 MW) [11]. In the case when the speed is 

between [3-12.5 m/s] indicated in zone 2, it gives an 

action control to the generator in order to increase 

the energy to reach the required value, and when the 

speed become between [12.5-25m/s] as indicated in 

zone 3, the controller keeps the generator to produce 

energy continuously. The controller should switch 

between the two modes in the operating time.  

 
Fig. 2. Functioning modes of the WT controller 

 

3. THE USED OBSERVERS 

 

In this section, the used linear observers are 

presented which are Kalman Filter (KF) and 

Luenberger Observer (LO). A background of the two 

applied state estimators is given and demonstrated, 

especially for modeling and estimation of the pitch 

system outputs for horizontal wind turbine 

benchmark. Then, these observed values are 

employed to design effective and powerful fault 

detection and isolation systems.  

 

3.1. Kalman Filter 

The KF is a set of equations provides a 

computational recursive algorithm of estimation can 

be applied to dynamic systems. Kalman's Filter uses 

are many and in various areas [23, 24, 26]. It can also 

estimate the process state in all interval times. 

Among of them, the main characteristic is their 

robustness, and it isn’t affected by perturbations [24, 

32]. 

The principal structure of Kalman filter as 

estimator applied to linearized dynamic systems is 

shown in Fig. 3. To calculate the estimated value of 

the actual state of the process, we need only the 

current measurement and the estimated value from 

the previous time step. During estimation, the KF 

operates by propagating the mean and the covariance 

of the state through the time[34]. The dynamic 

model as a state space of the observed system is 

written as: 

{
�̇�(𝑡) = 𝐴𝑋(𝑡) + 𝐵𝑢(𝑡)

𝑌(𝑡) = 𝐶𝑋(𝑡)
               (9) 

Whereas, the algorithm calculation steps of KF are 

summarized as follows: 

 

The predicted estimated state 1/
ˆ

−kkX
 
as:  

kkkkk BuXAX += −−− 1/11/
ˆˆ  

The predicted estimated covariance 
1/ −kkP  as:       

k

T

Qkkkk QAAPP ++= −−− 1/11/  

The measured residues 
kY  as :  

1/
ˆˆ

−−= kkkk XCZY  

The innovation covariance 
kS   is given as: 

k

T

kkk RCCPS += −1/  

The optimal Kalman gain 
kK  is then:  

1

1/

−

−= k

T

kkk SCPK  

A posteriori state estimated kkX /
ˆ  can be 

evaluated as follows: kkkkkk YKXX ˆˆˆ
1// += −  

Finally, the update estimated covariance 
kkP /

 is 

obtained: 
1// )1( −−= kkkkk PCKP  
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Fig. 3. Structure of estimation states using Kalman 

observer 
 

3.2. Luenberger Observer 

Luenberger observer is a deterministic estimator 

for linear systems, which can be only applied to state 

estimation of linear system with time-invariant 

property [30]. A simple and optimal solution is 

provided to the state estimation problem for multi-

variable plants, where the objective of this observer 

is to generate the residuals in a system described by 

the following state space: 
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{
�̇�(𝑡) = 𝐴𝑋(𝑡) + 𝐵𝑢(𝑡)

𝑌(𝑡) = 𝐶𝑋(𝑡)
            (10) 

Figure. 3 presents the structure of estimation 

states using Luenberger observer. The relationship 

between the estimated process and the observer 

parameters is illustrated. 

If the couple of (A, C) is completely observable, 

we can choose the values of the gain vector L such 

that the eigen values of the matrix defined by: (A-

LC) [31, 32].  All of them have strictly negative real 

parts. 

The state error (𝑒) of the observer is calculated 

as follows:    

𝑒 = 𝑥 − �̂�                               (11)                                                 

�̇� = �̇� − �̇̂� = 𝐴(𝑥 − �̂�) + (𝐶𝑥 − 𝐶�̂�)            (12)
        

                                 
       = (𝐴𝑥 + 𝐵𝑢) − (𝐴�̂� + 𝐵𝑢 + 𝐿(𝐶𝑥 − 𝐶�̂�)                                    

�̇� = (𝐴 − 𝐿𝐶)𝑒 
The block observer state space of Luenberger can 

be written as: 

{
𝑑𝑥

.

𝑑𝑡
= 𝐴�̂̇� + 𝐵𝑢 ⥂ +𝐿(𝐶𝑥 − 𝐶�̂�)

�̂� = 𝐶�̂�
          (13) 

Where: 𝐿 ∈ ℜ
2∗1

 : is the observer correction gain 

matrix 

 
 

 

 

 

 

 

 

 

 

 

s

1

 

C

B 

A
B 

L

B 

B

B 

)(ˆ tY + 

 

System 

Luenberger Observer  

 
 

 
 

+ 
 

- 
 

+ 
 

+ 
 

+ 
 

+ 
 

r 
 

B
B 

s

1

 

C

B 

A
B 

)(tY

+ 

 

)(tU

+ 

 
+ 
 

+ 
 

 
Fig. 4. Structure of estimation states using 

Luenberger observer  

 

4. PROPOSED DIAGNOSIS STRATEGIES  

 

Maintenance and operation costs of the WT 

system are significant for large-scale offshore types. 

So, an early detection and localization of defects is 

vital for maintaining availability with high degree 

and less costs of maintenance tasks. 

In this section, we will present and discuss the 

elaborated fault diagnosis strategy based on Kalman 

and Luenberger observers. These two observers are 

used to defect detection task by estimating the 

system states using modelled data. Their advantages 

are relatively having low calculation cost, fast 

response, and a compact system representation for 

controlling the wind turbine benchmark. Observer’s 

outputs are then compared with the WT sensor 

measurements to generate residuals. In normal 

operating conditions (without faults or fault-free), 

the residual’s is zero, and is changed under faulty 

conditions (occurrence of faults) when respecting all 

hypotheses of the designed observers.  

The proposed structure is applied on the pitch 

system of the wind turbine. In this study, we have 

considered only the occurred major actuator faults in 

the pitch system. The overall structure of the 

proposed approach for fault diagnosis task is shown 

in Fig 5. Where the simulated wind turbine is based 

on the model of Odgaard [11], in which, the 

simulated faults are tested as impermissible 

deviation of the WT parameters from the nominal 

situation/value in the case of a faulty behaviour. This 

benchmark represents a WT with a nominal power 

of (4.8 MW) containing a three-blades and a 

controlled variable-speed.  

The benchmark is used to simulate the proposed 

fault strategies on the pitch system actuators by 

changing the model parameters in equation. 1 as 

follows:  

- Hydraulic pressure drop changes the parameters 

in the second pitch system to: 𝜁2 =
0.45 and 𝜔𝑛2

= 5.73. 

- Increasing of air content changes the parameters 

in the third pitch system to: 𝜁3 = 0.9 and 𝜔𝑛3 =
3.42. 

In this work, in order to test the effectiveness of 

the applied observers (KF and LO), we will study 

only the possible faults in the actuators of the pitch 

system denoted (β2) and (β3). These faults are a 

changing dynamic type. The tested faults are 

illustrated in table.1 using the third scenario of the 

benchmark model [11]. To investigate these faults, 

we have reconstructed the faulty system as a linear 

form according to equation. 1. The linear observers 

are direct methods to simplify the modelling of the 

dynamic system.  

 
Table 1. Scenario of faults 

Actuator 

Fault 

Type Symbol Interval Time 

F1 Change 

Dynamic  

𝛥𝛽2 [2700s-2900s] 

[380s-3900s] 

F2 Change 

Dynamic 
𝛥𝛽3 [3400s-3500s] 

 

The used observers: Kalman filter and 

Luenberger observer are used to estimate the 

unmeasured variables of the output (Y) for the pitch 

system denoted (Ŷ). In our case, the estimated value 

(Ŷ) is the position of the blades (β2, and β3) for the 

both pitch positions, whereas, the actual outputs as 

measured variables are (βm2 and βm3).  

The dynamic model that can present the pitch 

system is defined in equation. 1 can be written using 

the state space as follows: 

{
�̇�(𝑡) = 𝐴𝑋(𝑡) + 𝐵𝑢(𝑡)

𝑌(𝑡) = 𝐶𝑋(𝑡)
             (14) 
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Fig. 5. Structure of the diagnosis strategy 

 

The state space parameters of the pitch system 

model are as follows:   

𝐴 = [
−13.3320 −123.4321

1 0
] , 𝐵 = [

1
0

], 

𝐶 = [0 123.4321], 𝐷 = [0]            (15)  

         

Where: 𝑋 ∈ ℜ1∗2is the state vector, 𝐴 ∈ ℜ2∗2 : 

the system matrix, 𝐵 ∈ ℜ2∗1 : the controllability 

matrix, 𝐶 ∈ ℜ1∗2: the observability matrix,             

𝑈 = [𝛽𝑟 − 𝛽𝑖𝑓] ∈ ℜ1∗1 : the input vector, and          

𝑌 = [𝛽𝑚] ∈ ℜ1∗1 is the output vector. 

To detect the possible occurred actuator faults in 

the pitch system, the proposed diagnosis structure 

using the two observers is based on four steps: 

Output Estimation, Residual Generation, Residual 

Evaluation, and Identification as follows: 

1. Estimation using Observer:  The purpose of 

using the Kalman filter and Luenberger observer as 

estimators is to approximate the output value of the 

system and discover the occurred fault in the studied 

plant. Each observer is designed in firstly to observe 

the actual output in healthy situations. In this step, 

the above estimation structures (Fig. 3 and Fig. 4) are 

used to determine the observers’ parameters.  

2.Residual generation: The residual is generated by 

comparing the output of the system and the output of 

the observer as shown in Fig. 5. Where the difference 

between the two outputs of the system and the model 

(observer) is considered as a residual. In this step, the 

residual r is calculated according to the responses of 

the process (pitch system) and the used estimator 

using the following equation at each time step.  

𝑟1,2 ∈ ℜ
1∗1 = 𝑌1,2 ∈ ℜ

1∗1 − �̂�1,2 ∈ ℜ
1∗1

     (16) 

 Where: Y(k) is the output of the pitch system, 

Ŷ(k) is the observed output (KF or LO).   

3. Residual Evaluation: After obtaining the 

residuals, a threshold with a fixed value is used from 

the value of the residuals. In this case, it is defined 

by two upper and lower values of thresholds denoted 

(UCL and LCL) for the residuals, because the 

residual has positive and negative values, for 

example r1,2 ∈ [-0.5, 0.5]. The goal is to determine 

the error field, so that when the signal exceeds the 

threshold, it is considered a fault, and if it does not 

exceed it, it is not considered a fault.   

In this step a decision mechanism is applied to 

decide the existence of faults in the studied actuators. 

So, two cases are considered: 

- The residual value is between the interval -0.5; 

0.5, r = 0, so: there isn’t any fault. 

- When the residual: r1,2∈-1;-0.5 [∪0.5 ; 1,      

so: r =1, a fault is detected in the process. 

4. Decision: to identify and locate the occurred 

faults, we have used a signature matrix to determine 

whether the faults studied have any relation with 

each other or not. In this case, we can see that the 

table is diagonal and the both faults are not related to 

each other as each fault happened at a different time 

and did not affect the second fault. In this step a 

decision mechanism is applied to decide the 

existence of faults in the studied actuators. 

 
Table 2. Signature table 

r F1 F2 

r1 X  

r2  X 

 

5. RESULTS AND DISCUSSIONS 

 

This section presents the obtained simulation 

results in order to demonstrate the ability and the 

efficiency of the proposed diagnosis structure. The 

suggested approach is verified on the horizontal WT 

benchmark measurements. Some tests and 

simulations comprising realistic faults in failure 

situations are illustrate the efficiency of the 

suggested methodology for detecting actuator faults 

in the pitch system. Based on the elaborated structure 

based observers that is presented in Fig. 5, the 

responses of the system and the detected faults are 

discussed here. We will present the obtained results 

for the two employed observers on two sub-sections: 

firstly, without faults, and secondly with the 

occurred faults in the actuators. 

 

5.1. Results without faults using Kalman Filter 

(KF) and Luenberger Observer (LO) 

In the case of operating the system without faults, 

Figures 6 to 9 present the positions of blades 2 and 3 

denoted (β2) and (β3), and the generated residuals 

using the two proposed observers.  

 

A. Blade Position Measurement (β2) 

Figures 6 (a) and 7(a) show the position 

measurements of blade 2 denoted (β2) using the two 

observers: KF and LO respectively. Whereas Figures 

6 (b) and 7(b) present the error as residuals 



DIAGNOSTYKA, Vol. 24, No. 1 (2023)  

Zemali Z, Cherroun L, Hadroug N, Nadour M, Hafaifa Z.: Fault diagnosis-based observers using Kalman … 

 

7 

calculated between the process responses (Y(t)) and 

the estimated values Ŷ(k) using the two observers as 

explained in eq. 22. In these figures, we present a 

zoom that shows the big similarity and the correct 

convergence between the two responses of the real 

system and the estimated values for the position of 

the blade 2 (β2). It can be seen that in the case of 

normal functioning mode (without faults), the 

elaborated observers are able to estimate correctly 

the position variable, as depicted in the zoom 

captured in the interval time [2700s-2900s]. The 

pitch system actuator is working correctly without 

any problems, and the controlled system generates 

the desired (βr) efficiently.   

The error as residual is always zeros in all 

simulation time intervals which demonstrates the 

efficiency of the estimation used step.   

 
Fig. 6. Position of the second blade (β2) and the Residual 

(using KF) 

 
Fig. 7. Position of the second blade (β2) and the Residual 

(using LO) 
 

B. Blade Position Measurement (β3) 

With the same manner as previously, Figures 8 

(a) and 9(a) presents observes values of the angle 

variable for the blade 3 denoted (β3). For each used 

observer, the generated error as residual is shown in 

Figures 8(b) and 9(b). As can be seen, residuals are 

zeros which demonstrate the capability of the 

designed observers (Kalman Filter and Luenberger 

observer) to estimate correctly the position variable 

of blade 3. A zoom part for each observer is 

illustrated in the time interval [3400s-3600s]. The 

studied actuator (β3) of the pitch system works 

correctly and the blade rotates efficiently according 

the desired angle generated from the controller as a 

reference. 

 

Fig. 8. Position of the third blade (β3) and the Residual 

(using KF) 

 

Fig. 9. Position of the third blade (β3) and the Residual 

(using LO) 

 

5.2. Results with Fault Occurrence in (β2) and 

(β3)  

 

A. Using Kalman Filter  

In the case of occurred faults in the actuators of 

the pitch system in the studied wind turbine. The 

results are depicted in Figures 10 and 11 respectively 

for the two blade actuators using Kalman filter.  

The first fault is simulated as a dynamic change, 

pump problems or leakage, and a slow control 

action. Using the benchmark model presented 

previously with the fault scenarios, this fault can be 

expressed by changing the parameters: 𝜉 and 𝜔𝑛 in 

(equation. 1) with the following values: 𝜉2 = 0.45 

and 𝜔𝑛2 = 5.73. 
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Fig. 10(a) shows the responses of the angle of the 

pitch system 2 denoted (β2) which is considered as a 

real output (Y(t)), and the estimated one by the 

Kalman observer denoted (Ŷ(t)). In the captured 

zoom of these two responses, we can see a difference 

between the two curves in a time interval 

corresponding the period of occurring a fault in the 

studied system. The generated residual as error 

between the position of the blade with the estimated 

values (Y(t) and Ŷ(t)) is depicted in Fig. 10(b) 

demonstrating the occurrence of fault in the time 

interval [2700s-2900s]. It expresses a variation 

between the two responses. The area between the 

two intermittent lines represents the upper and lower 

threshold. It is determined experimentally on the 

studied process.  

Whereas, Fig. 10(c) shows the detection and 

isolation of the fault that happened in the second 

pitch system (β2) during (200s) and exactly in the 

interval time [2700s-2900s]. This fault is denoted 

(F1). 

 

Fig. 10. The position of blade 2 (β2) with fault, (b) 

Residual, (c) detection of the first actuator fault 

 

For the second actuator fault, the simulation 

parameter is: 𝜉3 = 0.9 and 𝜔𝑛2 = 3.42, where they 

represent a change dynamics as Air in oil, a slow 

control action.  

Figure. 11(a) shows the two responses of the 

system and the KF as observer for (β3) respectively. 

The variation of the dynamic system parameters 

evolves a difference between the measured outputs. 

In the interval [3400s - 3500s], an error is observed 

as depicted in Fig. 11(b) illustrates the detection of 

the occurred fault in the system.   

Fig. 11(c) shows the detected fault that has been 

occurred in the third pitch system (β3) during (100s) 

in the interval [3400s - 3500s]. 

 

 

Fig. 11. The position of blade 3 (β3) with fault, (b) 

Residual, (c) detection of the actuator fault 

 

B. Using Luenberger Observer  

With the occurred of faults in the actuators of the 

pitch system, the obtained results using Luenberger 

observer are shown in Figures 12 and 13 respectively 

for the two blade actuators. We have used the same 

simulation parameters of the system and the faults. 

Where, the fault is simulated as a dynamic change 

with the same parameters of the transfer function 𝜉 

and 𝜔𝑛.  

Firstly, Fig. 12(a) shows the two responses of the 

angle of the pitch system 2 (β2). In which, Y(t)) is the 

real output of the studied wind turbine part, and �̂�(𝑡) 

is the estimated measurement using the designed 

Luenberger observer. In the captured zoom of these 

two responses, we can see a difference between the 

two curves. This is demonstrated in Fig. 12(b) 

demonstrating the generated residual of the position 

of the blade with fault occurrence. The residual is 

captured in an interval time of [3400s-3500s], where 

it expresses a variation between the two responses 

according to the applied fault. This error is measured 

over the upper and lower threshold limits.   

Using the proposed diagnosis strategy, the 

occurred fault can be detected correctly in the 

corresponding time interval as shown in Fig. 12(c). 

The occurred fault (F2) in the third pitch system (β3) 

during (100s) in the interval time [3400s-3500s]. 

The responses of the simulated test with second 

actuator fault (F2) are depicted in Figure. 13(a, b and 

c). Where, Figure. 13(a) presents the two responses 

of the system and the observer (Y(t) and �̂�(𝑡)) 

respectively. The variation of the dynamic system 

parameters evolves a difference between the 

measured outputs. In the interval [3400s-3500s], an 

error is observed as depicted in Fig. 13(b) illustrates 

the detection of the occurred fault in the system.  The 

occurred fault in the third pitch system (β3) is 

detected during a period of (100s) in the interval time 

of operation [3400s-3500s]. 
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Fig. 12. The position (β2) with fault, (b) Residual, (c) 

detection of the second actuator fault 

 

Fig. 13. The position of blade 3 (β3) with fault, (b) 

Residual, (c) detection of the actuator fault 

 

According to these obtained results obtained, we 

can approve that the proposed fault diagnosis 

strategy is well performed using the two designed 

observers: Kalman filter and Luenberger estimator. 

The behaviour of the studied wind turbine part is 

modelled correctly, in which the output variables are 

estimated with a minimum of errors. Based on this 

estimation step, the overall diagnosis system can 

generate the appropriated residual corresponding to 

the occurred faults in the pitch system using the two 

observers (KF and LO). Then the decision step 

makes precisely the correct classification of faults. 

The proposed diagnosis structure is very adapted 

and attractive to ensure the optimal productivity of 

the wind turbine.  

 

C. Comparison between KF and LO  

To show the ability of the estimation process, and 

the effectiveness of the proposed fault diagnosis 

based observers, in this section, the responses of the 

pitch system using the two elaborated observers are 

illustrated simultaneously in the case of a faulty 

system. Figures 14 and 15 present the position of the 

second and the third blade respectively with their 

generated residuals in the case of occurrence of 

actuator faults (F1) and (F2).  

In order to determine which observer is better  for 

estimating the output values of the pitch system, we 

have used two indicators of comparisons as a 

function of confidence indices.  

The first is the relative normal error denoted 

(RE). It is used to measure the estimation precision 

by using the following equation: 

𝑅𝐸 =
‖𝑌−𝑌𝑠‖

‖𝑌‖
                       (17)

                                                                                    

 

The second indicator is the Root Mean Square 

Error (RMSE). It is used for measuring the ability of 

data prediction and defined by: 

𝑅𝑀𝑆𝐸 = √
∑ (𝑌−�̂�)2𝑛

𝑖=1

𝑛
                  (18)

  

 

Where: 

Y: the measured blade position (β2 or β3), 

�̂�: the estimated value using the observers. 

              n: number of points (measurements). 

Based on the applied confidence and rating 

indices RE and RMSE, Table 3 presents a summary 

of the calculated values as a comparison between the 

two used observers (KF and LO) for the pitch system 

prediction. The simulated faults in the position of 

blades are investigated. The applied Kalman filter 

and Luenberger observers are stochastic estimators 

for linear systems. To estimate effectively the 

process outputs, the KF is based on correction matrix 

to define the gain parameters, whereas, the LO 

employs the pole placement.  

As can be seen in the Figures (14(a) and 15(a)) 

of the position blades using the two designed 

observers compared to the measured one of the 

studied system, the two estimators behave correctly 

for the wind turbine part (pitch system). From the 

presented simulation results in Fig. 14(b), the 

calculated residual in KF is less than LO depending 

to the proposed poles and the gain matrix (L) that has 

been calculated. This may give a small difference in 

the residual generated between the two responses.  

The effectiveness of each estimator is compared 

according to the fault detection response in the 

interval of occurrence. The range variation of the 

residual using LO is the least one while comparing 

with KF residual, which is the highest. But the 

applied failure is detected and localized effectively 

in the two cases: fault in (β2) is detected during a 

period of (100s) in the interval time [3800s-3900s] 

(as in Fig. 14(b), and the fault in (β3) is detected in 

the interval time of operation [3400s-3500s] (as in 

Fig. 15(b)). 
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Table 3. Comparison between KF and LO for the 

pitch system prediction 

 Second  Blade (β2) Third Blade (β3) 
Luenberger 

Observer 

(LO) 

Kalman 

Observer 

(KO) 

Luenberger 

Observer 

(LO) 

Kalman 

Observer 

(KO) 

RE 0.8804   0.9215 0.8802 0.9212 

RMSE 45.0333 45.8712 45.0796 45.9203 

Best 

Observer 

> Luenberger  

Observer 

> Luenberger  

Observer 

 

 

Fig. 14. (a) Position of the second blade, (b) Generated 

residual 

 

Fig. 15. (a) Position of the third blade, (b) Generated 

residual 

6. CONCLUSION 
 

In this paper, an efficient fault diagnosis structure 

based observers is proposed using Kalman filter and 

Luenberger observer for the pitch angle system with 

three-blades horizontal-axis WT. Actuator faults 

have been investigated and detected using this fault 

detection strategy. The proposed defect detection 

with isolation system is based on the observation of 

the output values using the elaborated observers in 

order to generate the corresponding residual of the 

occurred fault. A threshold value is defined in the 

decision step to detect faults correctly after 

estimation of the output variables. The KF and LO 

are designed in such a way that faults are considered 

as exogenous output disturbances to be rejected, 

which provides an accurate/fault-free state 

estimation. A comparison study is shown between 

the two designed observers to show characteristics of 

each one using some performance indices and 

results. All simulated actuator faults are detected and 

identified successfully in the pitch angle system. 

As perspectives, simulation of all faults in the 

rest parts of the WT machine such as the drive train 

and the generator with its converter. An equivalent 

model using intelligent techniques may define 

correctly the behaviour of the studied pitch system.   
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